
COL 10(3), 031101(2012) CHINESE OPTICS LETTERS October 10, 2012

Analytical and experimental demonstration of depth of field
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The wavefront coding technique is used to enlarge the depth of field (DOF) of incoherent imaging systems.
The key to wavefront coding lies in the design of suitable phase masks. To date, numerous kinds of
phase masks are proposed. However, further understanding is needed regarding phase mask with its phase
function being in a standard sinusoidal form. Therefore, the characteristics of such a phase mask are
studied in this letter. Deriving the defocused optical transfer function (OTF) analytically proves that the
standard sinusoidal phase mask is effective in extending the DOF, and actual experiments confirm the
numerical results. At the same time, with the Fisher information as a criterion, the standard sinusoidal
phase mask shows a higher tolerance to focus errors (especially severe focus errors) than the classical cubic
phase mask.
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Wavefront coding, proposed by Dowski et al.[1] in 1995,
is a breakthrough in extending the depth of field (DOF)
of incoherent imaging systems and the key to wavefront
coding lies in the design of phase masks.

The cubic phase mask was first designed in 1995.
Since then, numerous phase masks have been studied
for wavefront coding system. Such phase masks in-
clude the exponential[2], logarithmic[3−5], odd-symmetric
quadratic[6], and high-order[7] types. All of these types
could be used to extend the DOF. To our knowledge, the
sinusoidal phase function described in this letter is not
as well understood as the other fundamental functions
used to design the required phase masks. In comparison,
a function similar to sinusoidal is the cosine, which has
received much attention during the past years[8−11].

In our previous research[12], a phase mask with phase
function of ax4 sin (ωx) + ay4 sin (ωy) was designed and
named as sinusoidal phase mask. Its performance was
compared to three other popular phase masks, and was
found capable of enlarging the DOF and ensuring high
quality of restored images. However, this sinusoidal
phase mask is not in the general form, which can be
described by amplitude, angular frequency, and initial
phase angle. Thus, the sinusoidal phase mask with phase
function defined as α sin (ωx + θ) + α sin (ωy + θ) is in-
vestigated in this letter, and renamed as the standard
sinusoidal phase mask.

Unlike other phase masks, the phase profile of sinu-
soidal phase masks has periodicity. If the angular fre-
quency is large enough, the phase function cycle becomes
very small and the phase mask becomes similar to a si-
nusoidal grating. In this case, the phase mask could
have spatially dense features and will suffer from chro-
matic dispersion. Such issue can be avoided by impos-
ing a limit on the angular frequency, to ensure that the
phase profile has less than a half cycle within the aper-
ture plane. Hence, the local periodicity will disappear
and the chromatic dispersion can be eliminated.

The phase function [α sin (ωx + θ) + α sin (ωy + θ)] of
the standard sinusoidal phase mask is clearly separable
in two rectangular directions. Therefore, the aperture of
the imaging system under discussion is also assumed to
be rectangular. Under these circumstances, one dimen-
sional case is enough for the following analysis. With a
phase mask added to the aperture plane, the generalized
pupil function containing focus errors can be described as

P (x) =
1√
2

{
exp

{
j · [g (x) + kW20 · x2

]}
for |x| 6 1,

0 otherwise,
(1)

where x is the normalized pupil plane coordinate in the
horizontal direction and within the range of [–1, 1]; k is
the wave number; W20 is the defocus aberration constant
defined as W20 = [(πD2)/(4λ)] · (1/f − 1/do − 1/di)[1],
where D, f , do, di, and λ represent the aperture diam-
eter, focal length, object distance, image distance, and
wavelength, respectively; g is the corresponding phase
function.

According to the scalar diffraction theory, the defo-
cused OTF can be obtained through autocorrelation of
generalized pupil function. This can be written as

H(u,W20) =
1
2
·

1−|u|/2∫

−(1−|u|/2)

P (x + u/2) · P ∗ (x− u/2) dx

=
1
2
·

1−|u|/2∫

−(1−|u|/2)

exp{j · [2kW20ux

+ g(x + u / 2)− g(x− u / 2)]}dx, (2)

where u is the reduced spatial frequency and within the
range of [–2, 2].

Replacing g with α sin (ωx + θ), Eq. (2) can be con-
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verted to

H(u,W20) =
1
2
·

1−|u|/2∫

−(1−|u|/2)

exp{j · [2kW20ux

+ 2a · sin ωu

2
· cos(ωx + θ)]}dx. (3)

Equation 3 cannot be evaluated by traditional meth-
ods. Instead, the method of stationary phase[1,14] should
be used. Letting φ denote the exponential phase in the
integrand of Eq. (2), then Eq. (3) can be approximately
evaluated as

H(u,W20) =

√
2π

k · |φ′′ (xs)|

=
√√√√√

π∣∣∣∣∣aω2 · sin ωu
2 ·

√
1−

(
kuW20

aω·sin ωu
2

)2
∣∣∣∣∣

u 6= 0, (4)

where φ′′ is the second-order derivative of φ with re-
spect to x. The stationary point xs is obtained by mak-
ing the first-order derivative of φ with respect to x as
zero and should satisfy the condition (A): sin(ωxs + θ) =
(kuW20) /[aω · sin(ωu/2)].

Equation 4 indicates that the imaging system can be
made to be defocus invariant only when the condition
(B): |(kuW20)/[aω · sin(ωu/2)]| << 1 is satisfied across
the operating DOF of the imager. In this case, the OTF
will be largely invariant to the defocus aberration con-
stant, thus extending the DOF. However, an underlying
constraint exists for the mask parameters α, ω, and θ.

According to the condition (B), the condition (A) can
be simplified as following equation and the stationary
point xs can be obtained as

ωxs + θ = 2mπ + arcsin
(

kuW20

aω · sin ωu
2

)

≈ 2mπ +
kuW20

aω · sin ωu
2

, (5)

xs ≈
2mπ + kuW20

aω·sin ωu
2
− θ

ω
, (6)

where m equals 0, ±1, ±2, ±3,· · · .
Using the stationary phase method[14] requires that Eq.

(3) is evaluated within the region xs ∈[−ε, ε], where ε is
very small. Thus, only one value for xs is effective in
usual cases, and Eq. (6) can be rewritten as

xs ≈
kuW20

aω·sin ωu
2
− θ

ω
. (7)

At the same time, the stationary point should also be
within the region of [− (1− |u|/2) , (1− |u|/2)]. Hence,

the relationship between the mask parameters α, ω, and
θ can be given as

kuW20

aω · sin ωu
2

− ω ·
(

1− |u|
2

)

< θ <
kuW20

aω · sin ωu
2

+ ω ·
(

1− |u|
2

)
. (8)

The analytical derivation clearly indicates that the
sinusoidal phase mask can extend the DOF of incoher-
ent imaging systems on the condition that Eq. (8) is
satisfied. Optimization should be the first step to as-
sess the sinusoidal phase mask performance. Among
all the optimization methods, Fisher imformation based
method[2,13] is adopted in this study and simulated an-
nealing is used to obtain the global optimum mask pa-
rameters, as given in Table 1. At the same time, Eq.
(8) is also incorporated into the optimization procedure
as a constraint, which ensures that the optimum mask
parameters are consistent with theoretical analysis. Fur-
thermore, as already mentioned, the normalized phase
profile within the aperture plane can only have less than
half cycle during the optimization of the phase mask to
ensure that the phase mask will not suffer from chro-
matic dispersion.

In Table 1, Th is a threshold satisfying∫
MTF(u,W20 = 0, P )du >Th, where MTF denotes the

modulation transfer function and P represents the mask
parameters. The less sensitive the OTF is to defocus,
the smaller will be the corresponding MTF. A very small
MTF could cause difficulty in digital image restoration.
Thus, Th is used to avoid this problem and ensure that
the MTF will not be too small during the optimization.
At the same time, Th is also a criterion based on which
the performance of different phase masks can be assessed;
having the same Th indicates that the MTF degradation
is at the same level.

With the optimum mask parameters, the defocused 3D
MTF can be computed, as shown in Fig. 1, where Th
is set to 0.31 as an example. The MTF remains nearly
unchanged when the defocus constant changes from 0 to
30. Figures 2 and 3 explain the importance of Eq. (8). In
Figs. 2(a) and (b), Th is set to 0.21 and 0.25, and W20 is
within the range of 0 to 30. The MTF curves are clearly
quite stable no matter what the value of W20 is, proving
that the system is defocus invariant. Figures 2(c) and (d)
display the distribution of Eq. (8) corresponding to the

Table 1. Optimum Parameters of Sinusoidal Phase
Mask

Th α ω θ

0.21 395.76 1.37 0.0430

0.23 186.88 1.63 0.0798

0.25 239.91 1.44 0.0600

0.27 645.36 0.96 0.0499

0.29 186.89 1.41 3.0680

0.31 117.90 1.63 0.0779

0.33 67.890 1.84 3.0080

0.35 78.720 1.68 0.2230
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optimum parameters, with the horizontal axis denoting
the range of defocus and the vertical axis representing
the range of normalized spatial frequency. Almost all the
area has been covered as long as the mask is optimized
and Eq. (8) is satisfied. Figure 3, in which θ is set to
non-optimum values, is also provided for comparison. As
Figs. 3(a) and (b) indicate, the defocused MTF are still
stable with respect to the defocus aberration. However,
the effective bandwidth of MTF decreases, correspond-
ing to Figs. 3(c) and (d), where the effective area has
been significantly reduced. The θ change for Th=0.21 is
bigger than that for Th=0.25, thus the effective area for
Th=0.21 becomes much smaller. A similar phenomenon
will occur if we use non-optimum a/ω to plot Eq. (8),
and thus the results are not given here. Equation (8) is
therefore a necessary condition that should be satisfied
for the sinusoidal phase mask to be capable of extending
the DOF.

As the cubic type is the most popular phase mask,
a performance comparison between the sinusoidal and
cubic phase mask should be performed. The cubic phase
mask is first optimized with the same optimization pro-
cedure as above. The comparison is then carried out
with Th set at the same value. The Fisher information
is also used to judge which type of phase mask is even
less sensitive to defocus. Figure 4 shows the results.

Figure 4 shows that the Fisher information of the si-
nusoidal phase mask is not monotonic, with a seemingly
global minimum around moderate defocus. The smaller
the Fisher information is, the less sensitive will be the
system to defocus. For smaller defocus values, the cubic
phase mask is less sensitive to focus errors; meanwhile,
for higher defocus values, the sinusoidal phase mask has
a higher tolerance to misfocus. Because high defocus
values can lead to the loss of high-frequency information,
the standard sinusoidal phase mask performs slightly
better than the cubic type, especially when the Th in-
creases.

Numerical evaluations have proven that the standard
sinusoidal phase mask can enlarge the DOF, but experi-
mental results are more persuasive. First, a doublet with
focal length of 50 mm and diameter of 30 mm is cho-
sen as the primary imaging lens. In addition, Mintron
CCD camera with 720 × 576 (pixels) resolution is used
to record the images within the 380–780-nm spectral
range. Second, the standard sinusoidal phase mask (15
× 15 × 3 (mm)) is fabricated using PMMA as the ma-
terial and the mask parameters corresponding to those
for use Th=0.25 (α = 239.91, ω = 1.44, and θ = 0.06).
The real element and its 2D phase profiles are shown in
Fig. 5. As a non-rotationally symmetric element, at least

Fig. 1. Defocused MTF with Th set to 0.31 and defocus equal-
ing (a) 0, (b) 10, (c) 20, and (d) 30.

Fig. 2. Defocused MTF and visualization of Eq. (8) corre-
sponding to the optimum parameters when Th is set to 0.21
and 0.25, respectively (the red area means that the condition
of Eq. (8) is satisfied and the blue area indicates Eq. (8) is
violated).

Fig. 3. Defocused MTF and visualization of Eq. (8) corre-
sponding to the non-optimum parameters when Th is set to
0.21 and 0.25, respectively (the red area means that the con-
dition Eq. (8) is satisfied and the blue area indicates Eq. (8)
is violated).

0.1 µm of surface fabrication accuracy must be achieved
to ensure the characteristics of the phase mask.

A lens tube is designed to fix the doublet and the
phase mask, and the position of the focal plane cannot
be changed. In this case, an ideal object plane is located
about 330 mm away from the entrance pupil. Therefore,
the effective F/# is approximately 3.3, and the original
DOF is only about 1.5 cm. This small DOF makes it
much easier to verify the DOF extension effect. Two
groups of experiments are carried out and discussed.

First, a resolution chart is moved from –75 to 40 mm
in a step of 10 mm, with the ideal object plane considered

031101-3



COL 10(3), 031101(2012) CHINESE OPTICS LETTERS October 10, 2012

 

Fig. 4. Comparison of the defocus invariance between the cu-
bic phase mask and the standard sinusoidal phase mask using
Fisher information as a criterion with Th equaling (a) 0.21,
(b) 0.23, (c) 0.25, and (d) 0.31, respectively.

Fig. 5. Sinusoidal phase mask fabricated (left) and its 2D
phase profiles (right).

Fig. 6. Experimental results of the first group: (a) image se-
ries captured using only the doublet lens and (b) intermediate
image captured with the sinusoidal phase mask added to the
system aperture.

Fig. 7. Experimental results of the second group: (a) low
DOF image; (b) intermediate image captured by the system
with the sinusoidal phase mask added; and (c) restored large
DOF image.

as the zero position. A series of images is captured to
demonstrate the DOF extension effect, as shown in Fig.
6. The images in the left side of Fig. 6 correspond to the
case in which no phase masks are used, while those in the
right side are captured with the sinusoidal phase masks
adopted. Only partial images captured around the ideal
object plane are clear due to the small DOF. In addition,
significant information loss can be seen at the extreme
position. However, although the images demonstrate a
uniform blur, which should be digitally eliminated, all
the information can be resolved in the wavefront coding
system. In addition, the ratio of DOF extension can be
estimated at about 7.6.

Second, a textbook cover with the smallest spatial fea-
ture of 2 mm is titled to simulate one extended object.
Moreover, the letter “B” is adjusted to be around the
ideal object plane, as shown in Fig. 7, where the first
row denotes the small DOF image and the second row
is the image captured by the wavefront coding system.
From the left-most part to the right-most part of the im-
age, the variation of the defocus aberration constant is
approximately [–3.9π, 5.4π] with the ideal object plane as
the zero reference position. Clearly, the parts that can-
not be seen in the small DOF image reappears with the
help of phase mask. This proves that the DOF is indeed
extended. Although the information is preserved, the in-
termediate images are blurred, and digital restoration is
necessary to obtain clear, large DOF images. The third
row provides an example in which the popular Wiener
filter is used to de-blur the images.

In conclusion, both the numerical analysis and experi-
ments indicate that the standard sinusoidal phase mask
is another alternative in extending the DOF.

This work was supported by the West Light Founda-
tion of the Chinese Academy of Sciences under Grant
No. J11-002.
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